Cospans and spans of graphs: a categorical algebra for the sequential and parallel composition of discrete systems

نویسنده

  • L. de Francesco Albasini
چکیده

We develop further the algebra of cospans and spans of graphs introduced by Katis, Sabadini and Walters [11] for the sequential and parallel composition of processes, adding here data types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some algebraic laws for spans ( and their connections with multirelations ) 1 Roberto Bruni and Fabio Gadducci

This paper investigates some key algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by cartesian product and disjoint union of sets. Our results find analogous counterparts in (and are partly inspired by) the theory of relational algebra...

متن کامل

Process algebraic modeling of authentication protocols for analysis of parallel multi-session executions

Many security protocols have the aim of authenticating one agent acting as initiator to another agent acting as responder and vice versa. Sometimes, the authentication fails because of executing several parallel sessions of a protocol, and because an agent may play both the initiator and responder role in parallel sessions. We take advantage of the notion of transition systems to specify authen...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

Generic Commutative Separable Algebras and Cospans of Graphs

We show that the generic symmetric monoidal category with a commutative separable algebra which has a Σ-family of actions is the category of cospans of finite Σ-labelled graphs restricted to finite sets as objects, thus providing a syntax for automata on the alphabet Σ. We use this result to produce semantic functors for Σautomata.

متن کامل

ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS

Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category   TopSys   of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009